COURSE OUTLINE

Department:	Faculty of Computing	Knowledge Group: Vision and Machine Learning		I Machine Learning
Programme:	MSCS	Class: MSCS-2k23		
Course code:	CS-871	Academic Session/Semester: Spring 2024		
Course name:	Machine Learning	Pre/co requisite (course name and code, if applicable):None		None
Credit hours:	3+0			

Course Synopsis	This course is designed to provide students with a comprehensive and in-depth understanding of the core principles, techniques, and applications of machine learning. This course explores the foundations of supervised, unsupervised, and reinforcement			
	learning, delving into topics such as classification, regression, clustering, and neural networks. The knowledge gained in this course will enable the students to build and evaluate predictive models, extract meaningful insights from data, and make informed decisions in various domains, from business analytics to healthcare. Through a combination of theoretical knowledge and practical application, this course equips			
	students with the skills and expertise needed to excel in the dynamic and rapidly evolving field of machine learning.			
Course Learning				
Outcomes	1. Understand machine learning algorithms, tools, and techniques.			
(CLOs)	2. Analyse supervised and unsupervised learning techniques for classification,			
	regression, and dimensionality reduction tasks.			
	3. Develop solutions for practical challenges by employing machine learning algorithms.			
	 Implement various machine learning algorithms for real-world applications using standard tools and applications. 			
Course	Tuesday (CR-16 IAEC)			
Schedule	Thursday (CR-16 IAEC)			
Course lecturer	Name	Office	Contact no.	E-mail
	Dr Hashir Moheed Kiani	A-104		hashir.moheed@seecs.edu.pk

Details on Innovative Teaching & Learning practices that will be used during the course:

No.	Туре	Implementation	
1.	Active learning	Conducted through in-class or hands-on activity.	
given a design project that requires the application of Machine algorithms to a real-world problem in domains like healthcare, envi		Conducted through design project. Students in a team of two to three will be given a design project that requires the application of Machine Learning algorithms to a real-world problem in domains like healthcare, environment, business analytics etc.	
3.	Blended learning	Conducted through Learning Management System (LMS) of NUST. All information as well as materials related to teaching and learning activities will	

be shared with class through this system. Some for formative assessments
will be also conducted using this system.

Weekly Schedule:

Week	Topics	Assessment Plan	
Week 1	Introduction to course		
	Machine Learning as function approximation		
	Linear Regression		
Week 2	Gradient Descent		
	Stochastic Gradient Descent		
	Logistic Regression		
Week 3	Decision Trees	Quiz 1	
	Gini Impurity and Information Gain		
	Decision Tree Pruning		
Week 4	K Nearest Neighbours	Assignment 1	
	Parzen Windows		
Week 5	Kernel Methods	Quiz 2	
Week 6	Support Vector Machines	Assignment 2	
	Linearly separable case		
	Non-Linear cases and kernel trick		
Week 7	Bayesian Analysis	Quiz 3, Project Floated	
	Bayes Theorem		
	Naïve Bayes Classifier		
Week 8	Bayesian Networks	Project Proposal Submission	
	Forward Backward Algorithm		
Week 9	Mid-Semester Exam		
Week 10	Model Selection		
	Feature Engineering		
	Regularization		
	Experimental Design		
Week 11	Principal Component Analysis		
	Linear Discriminant Analysis		
Week 12	Perceptron	Assignment 3, Project Update 1	
	Backpropagation		
Week 13	Clustering Techniques	Quiz 4	
Week 14	Reinforcement Learning	Project Update 2	
Week 15	ML in Healthcare	Quiz 5	
	Prediction of Heart Disease (Case Study 1)		

Week 17	Prediction of AQI (Case Study 2) Project Presentations	Project Presentations
	Prediction of pollutant levels using satellite data (Case Study 1)	
Week 16	ML in Environment Monitoring	Project Report Submission
	Prediction of Covid (Case Study 2)	

Assessment Methods:

	Assessment	Percentage
1	Quizzes	10%
2	Assignments	5%
3	Mid-Term Exam	25%
4	End-Semester Exam	45%
5	Project	15%
Total:		100%

Learning resources:

Textbook:

- 1. RS Michalski, JG Carbonell, TM Mitchell, "Machine Learning: An Artificial Intelligence Approach", Springer, 2014
- 2. Christopher M. Bishop, "Pattern Recognition and Machine Learning", 2007

Reference Book:

- 1. Richard Duda, Peter Hart and David Stork, Pattern Classification, 2nd ed. John Wiley & Sons, 2001.
- 2. Richard Sutton and Andrew Barto, Reinforcement Learning: An introduction. MIT Press, 1998

Grading Policy:

Quiz Policy:

The quizzes will be unannounced / announced and normally last for ten minutes. The question framed is to test the concepts involved in last few lectures. Number of quizzes that will be used for evaluation is at the instructor's discretion.

Project Policy:

Students will be required to develop a project during the course which should be completed towards the end of the semester. They will be graded based on project deliverables and presentation at the end. Students will work in a group/team for projects. A group of 3 students is recommended.

Assignment Policy:

In order to develop comprehensive understanding of the subject, assignments will be given. Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee.

Plagiarism:

SEECS maintains a zero-tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.